

Data-Driven Analytics of Human Dynamics

Jiaxing Shen Department of Computing Dec 2020

Outline

- Introduction to Human Dynamics
- Research Taxonomy
- Opportunities and Challenges
- My Research Scope and Previous Works
 - Group Detection using WiFi Probes
 - User Profiling using Nonlinguistic audio data
- Conclusions

What is Human Dynamics?

- Diverse definitions in different disciplines
- Defined as human activities and human interactions herein [1]
- Human dynamics research is a branch of complex systems research whose main goal is to understand human behaviors

[1] M. Yuan, "Human dynamics in space and time: A brief history and a view forward," Transactions in GIS, 2018.

Why Human Dynamics?

Questions

- 1) Are human actions randomly distributed in time?
- 2) Are human trajectories randomly distributed in space? Never!

Timing of tasks

- "when individuals execute tasks ... most tasks being rapidly executed, whereas a few experience very long waiting times" [1]
- 2) "each individual being characterized by a time-independent travel distance and a significant probability to return to a few highly frequent locations" [2]

✓ Gain comprehensive understandings and insights of human behaviors.

Barabasi, Albert-Laszlo. "The origin of bursts and heavy tails in human dynamics." Nature 435.7039 (2005): 207-211.
 Gonzalez, Marta C., Cesar A. Hidalgo, and Albert-Laszlo Barabasi. "Understanding individual human mobility patterns." Nature 453.7196 (2008): 779-782.

Why Human Dynamics?

- ✓ Benefit decision-makers/policy-makers in a wide range of applications
- Business Intelligence
 - Improve marketing strategy: mine social relationship and apply social homophily
 - Predict organization sustainability: inspect gender inequality
 - Improve service quality: examine facility utilization
- Public Health
 - Predict epidemics and viruses: analyse social networks
 - Cure mental disorders: detect early symptom
- Public Security

. . .

Identify suspects: detect groups

Taxonomy of Human Dynamics Research

Opportunities

Despite the great potential, conventional HD research progressed slowly

• Time-consuming, unrealistic settings, coarse-granularity, biased results, ...

Big Data-Driven HD research bring great opportunities

• Efficient in data collection, real-life env, fine-grained and comprehensive analysis, ...

	01 Early stage	02 Mobile and big data era
Data collection	Interview, survey, observe	ICT, IoT, Check-in
Scale	Small scale (several people)	Large scale
Setting	Mostly laboratory	Real-life scenario
Granularity	Coarse-grained	Fine-grained
Data volume	Small volume	"Big data"
User profiles	Complete	Incomplete

Open Challenges

Emerging challenges of HD research in the mobile and big data era

- Incomplete user profiles
 - What: datasets collected by IoT lack detailed demographics
 - $\circ~$ Why: would hinder or lead to opposite understandings
- Noisy data
 - $\circ~$ What: deviation of sensors and unexpected situation of real-life scenarios
 - \circ Why: data quality is vital to the performance
- The complex and dynamic nature of human behaviors
 - $\circ~$ What: human behaviors are affected by various factors
 - Why: degrade the effectiveness and robustness of the system

Potential Solution

Inferring contextual information is usually the key to address the dynamics of human behaviors [1].

- Relative context
 - \circ Spatiotemporal information of an event
- Relational context
 - Various social relationships among different entities
- Mental context
 - Subjective feelings include emotion, perception, and motivation

[1] Shih-Lung Shaw and Daniel Sui. "Introduction: Human Dynamics in Perspective". In: Human Dynamics Research in Smart and Connected Communities. 2018.

Research Scope: 3D Research Space

Three Dimensions

- 1) Levels of human dynamics
- 2) Tasks
 - <u>Sense</u> observable behavior
 - <u>Infer</u> hidden behavior
 - <u>Predict</u> future behavior
 - <u>Intervene</u> human behavior
- 3) Data modalities
 - Wi-Fi
 - Audio
 - ...

Examples

- <u>Sense gesture</u> with acoustic signal
- <u>Infer gender</u> with audio data
- <u>Infer</u> social ties from Wi-Fi logs
- Predictlearningperformancewithtransactions and online learning traces

Our Works on Data-Driven Analytics of Human Dynamics

- BaG: Behavior-aware Group Detection in Crowded Urban Spaces using WiFi Probes
 - Level: social level; Data: WiFi probes; Task: group detection
- SNOW: Detecting Shopping Groups Using WiFi
 - Level: social level; Data: WiFi data; Task: group detection
- User Profiling based on Nonlinguistic Audio Data
 - Level: psychological and physical levels; Data: nonlinguistic audio; Task: gender detection and personality recognition
- Feature-Based Room-Level Localization of Unmodified Smartphones
 - Level: physical levels; Data: WiFi probes; Task: sense location
- Inferring Real-life Social Ties based on Smart Card Transaction Data
 - Level: social levels; Data: smart card transaction; Task: infer social ties

BaG: <u>Behavior-aware Group Detection in Crowded Urban Spaces</u> using WiFi Probes

Jiaxing Shen, Jiannong Cao, and Xuefeng Liu The Hong Kong Polytechnic University Published in WWW 2019 and IEEE TMC

Group Detection – Background and Motivation

Definitions

- Group: individuals with similar locations or behaviors [1-2]
- Group detection: detect whether two individuals belong to a group or not

Motivations of group detection

- Marketing: group-aware promotions in buy x and get 1 free
- Healthcare: accurate disease transmission model considering grouping information
- Urban planning: group-aware taxi dispatching in railway stations and airports

[1] Rijurekha Sen, Youngki Lee, Kasthuri Jayarajah, Archan Misra, and Rajesh Krishna Balan. [n. d.]. Grumon: Fast and accurate group monitoring for heterogeneous urban spaces. In Proceedings of ACM SenSys, 2014.
[2] Francesco Solera, Simone Calderara, and Rita Cucchiara. 2016. Socially constrained structural learning for groups detection in crowd. IEEE TPAMI (2016).

Group Detection – Existing Methods

- Vison-based approaches
 - $\circ~$ Use camera to track users
 - Cluster users' trajectories into disjoint subsets
- Sensor-based approaches
 - Use wearable devices or install apps on smartphones to collect users' multimodal behavioral data
 - Groups are detected through correlation analysis of multiple sensor data
- WiFi-based approaches
 - Signal strength indicates co-location
 - $\circ~$ Individuals with frequent co-locations are groups

Group Detection – Existing Methods

- The Main drawback of WiFi-based approaches
 - WiFi signal is vulnerable to many factors like the human body attenuation
 - \circ It is thus unreliable in crowded scenarios

Question: Can we reliably detect groups using WiFi data in crowded urban spaces?

Group Detection – Observation of Heuristics

Group Detection – Research Challenges and Solutions

- How to handle spatiotemporal sparsity of WiFi data?
 - Spatial sparsity and temporal sparsity
 - ✓ Represent mobility and behavior information as two matrices
 - ✓ Apply matrix factorization (MF) to handle data sparsity by decomposing an input matrix into the product of several factor matrices.
- How to cluster users considering both mobility and behaviors?
 - Mobility and behaviors have latent associations since both are different perspectives of the real grouping information.
 - ✓ Consider sparsity-constrained collective nonnegative MF.

Group Detection – Experimental Evaluation

Collected data

- 4,184,778 probes from 59,282 devices are collected daily on average in one week
- Only 3,951 mobile devices; 95% duration within 120 minutes

Evaluation metrics

$$\begin{cases} Precision(P) = \frac{tp}{tp+fp} \\ Recall(R) = \frac{tp}{tp+fn} \\ F\text{-score} = 2 \cdot \frac{P \cdot R}{P+R} \end{cases}$$

Baseline approaches

Code	Features	Method				
₹-M ⊲⊚	RSSI	MCL	verifv NoB			
≀N-M ⊲⊚	RSSI + NoB	MCL	verify Mobility			
/IN-M 🌀	Mobility + NoB	MCL				
3aG	Mobility + NoB	SCNMF	Verify CMF			
}aG G> Graph A	Mobility + NoB	SCNMF rix Approach				

Group Detection – Experimental Evaluation

User Profiling based on Nonlinguistic Audio Data

Jiaxing Shen¹, Jiannong Cao¹, Oren Lederman², Shaojie Tang³ and Alex 'Sandy' Pentland² ¹ The Hong Kong Polytechnic University ² Massachusetts Institute of Technology ³ The University of Texas at Dallas Published in IEEE ICDM 2018 and Submitted to ACM TOIS

User Profiling – Background and Motivation

Definitions

- User profiling refers to the process of inferring users' attributes of interest (AoIs) including gender and personality.
- Nonlinguistic audio
 - $\circ~$ What: coarse-grained audio without linguistic content
 - Why: privacy concerns and ethical issues in truly spontaneous conversations

Motivation

- User profiles are foundation of human dynamics research
- Benefit stakeholders in many application areas
 - Healthcare: personalized treatments
 - Organization administration: optimize group productivity

User Profiling – Background and Motivation

- Gender: a binary variable
- Personality: five-factor model (aka big five) [1]

<u>O</u> penness	Artistic, Curious, Imaginative, Insightful, Original, Wide interests, etc.
<u>C</u> onscientiousness	Efficient, Organized, Planful, Reliable, Responsible, Thorough, etc.
Extraversion	Active, Assertive, Energetic, Outgoing, Talkative, etc.
Agreeableness	Appreciative, Kind, Generous, Forgiving, Sympathetic, Trusting, etc.
Neuroticism	Anxious, Self-pitying, Tense, Touchy, Unstable, Worrying, etc.

[1] Alessandro Vinciarelli and Gelareh Mohammadi. 2014. A survey of personality computing. IEEE Transactions on Affective Computing (2014).

User Profiling – Related Works

Gender identification and personality recognition have been studied with raw audio [1,2].

- Gender identification
 - Acoustic features caused by physiological differences and phonetic differences
 For example, females have higher pitch
- Personality recognition
 - Linguistic features and acoustic features reflect personality
 - For example, extroverts tend to speak more frequently

However, hard to extract acoustic or linguistic features from nonlinguistic audio

[1] Musaed Alhussein, Zulfiqar Ali, Muhammad Imran, and Wadood Abdul. 2016. Automatic gender detection based on characteristics of vocal folds for mobile healthcare system. Mobile Information Systems (2016).
[2] Guozhen An, Sarah Ita Levitan, Rivka Levitan, Andrew Rosenberg, Michelle Levine, and Julia Hirschberg. 2016. Automatically Classifying Self-Rated Personality Scores from Speech.. In Interspeech.

User Profiling – Main Idea

Extract conversational features (turn-taking and interruption patterns)

Qualitative findings from Sociology and psychology studies

- Men have longer speaking turns [1] and are more likely to interrupt women than been interrupted by women [2]
- Extroverts, for example, tend to talk more, louder, faster, and have fewer hesitations[3]

[1] Cecilia L Ridgeway. 1992. Gender, interaction, and inequality. Springer.
Xiaoquan Zhao and Walter Gantz. 2003. Disruptive and cooperative interruptions in prime-time television fiction:
[2] The role of gender, status, and topic. Journal of Communication (2003).
[3] Ligia Maria Batrinca, Nadia Mana, Bruno Lepri, Fabio Pianesi, and Nicu Sebe. 2011. Please, tell me about yourself: automatic personality assessment using short self-presentations. In ICMI. ACM.

User Profiling – Challenge and Solution

- How to accurately detect individual voice activities from nonlinguistic audio?
 - First, variations in people's vocal features and ways of collecting the audio data pose serious challenges to accurate voice activity detection (VAD).
 - Second, due to physical proximity, the nonlinguistic audio may come from other participants, which leads to false-positive detections.
 - ✓ Adaptive Bayesian VAD algorithm
- How to fill in the gap between dynamic conversational behaviors and stable AoIs?
 - Both gender and personalities are consistent over time.
 - Conversational behaviors are dynamic and could be affected by many factors like emotions and environments.
 - ✓ Extract and fuse multi-level features

User Profiling – System Overview

- Voice activity detection (VAD): to detect whether a participant speaks or not given the nonlinguistic audio of all participants of a meeting
- Conversational feature extraction: based on the detected voice activities, conversational features are then extracted including turn-taking behaviors and interruption patterns.
- Inferring AoI: to identify gender with a two-stage classification model and recognize personality traits using a gender-assited multitask learning model

User Profiling – Voice Activity Detection

A meeting with four people

Composition of the badge data

$\mathbf{S}_i(k) = \mathbf{V}_i(k) + \rho \approx \mathbf{V}_i(k)$
$\mathbf{S}_{j}(k) = \phi_{ij} \cdot \mathbf{V}_{i}(k) + \rho \approx \phi_{ij} \cdot \mathbf{V}_{i}(k)$

• Observation: when only one person speaks, his badge signal is linearly correlated with other badge signals.

User Profiling – Extract Turn-Taking Features

28/34

User Profiling – Extract Interruption Feature

 \mathbf{I}_{FF} : Number of FF interruption

 \mathbf{I}_F : Number interruption started by females

 \mathbf{N}_F : Number of females in group

FM>MF>MM>FF

(b)

User Profiling – Gender Identification & Personality Recognition

- Two-stage gender identification
 - Gender composition first, then gender of each individual
- Gender-assisted multitask learning for personality recognition
 - Gender is important; personality traits are correlated.

Dataset

- 21 study groups, each with 4~5 students (100 in total)
- 273 effective meetings with a total length of 438.25 hours in 4 weeks

Performance of voice activity detection

Performance of gender identification

Performance of gender composition detection (G_comp) and gender identification with different features.

Performance of personality recognition

GAMTL_idl	Personality	Individual-level	Gender-assisted MTL
GAMTL	Personality	Multi-level	Gender-assisted MTL
MTL	Personality	Multi-level	MTL
NN	Personality	Multi-level	Neural networks for each trait

Method\Trait	Openness (O)		Conscientiousness (C)		Extraversion (E)			Agreeableness (A)			Neuroticism (N)				
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
NN	0.793	0.573	0.665	0.600	0.639	0.619	0.634	0.492	0.554	0.533	0.487	0.509	0.537	0.486	0.510
MTL	0.854	0.622	0.720	0.655	0.661	0.658	0.660	0.558	0.605	0.585	0.579	0.582	0.577	0.502	0.537
GAMTL_idl	0.724	0.695	0.709	0.595	0.701	0.644	0.574	0.588	0.581	0.577	0.500	0.536	0.680	0.426	0.524
GAMTL	0.828	0.706	0.762	0.682	0.659	0.670	0.608	0.604	0.606	0.663	0.639	0.651	0.709	0.475	0.569

Conclusions

- Human dynamics research are multilayered and have both great scientific and commercial potentials
 - Focus on human behaviors and human interactions
- Inferring contextual features are effective ways of addressing the dynamics of human behaviors
 - Three common contexts: relative, relational, and mental
- Find research problems by exploring the 3D space
 - Cross-modality research
 - To to answer the "what if" questions

Thanks for listening! Any questions?